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End-to-end distribution function of stiff polymers for all persistence lengths
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We set up recursion relations for calculating all even moments of the end-to-end distance of Porod-Kratky
wormlike chains inD dimensions. From these moments we derive a simple analytic expression for the
end-to-end distribution in three dimensions valid for all peristence lengths. It is in excellent agreement with
Monte Carlo data for stiff chains and approaches the Gaussian random-walk distributions for low stiffness.
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[. INTRODUCTION Sinceu(s) are unit vectors, the path integral is not solv-
Gable exactly, except for zerd. It is easy, however, to find
arbitrarily high even moments of the end-to-end distance of
,ghe distributionP (R)

The statistical properties of stiff polymers can be studie
with the help of the Kratky-Porod wormlike chain modiél,
whose properties are explained in detail in the Yamakawa
textbooks[2,3] and in a recent article by Chirikjian and
Wang[4]. Expanded possibilities of doing experiments with (R = J d°RR"P.(R). (1.5
individual polymers using laser tweezers have led to in-

creased theoretical interest in this model. The mth f the chai be obtained directly f
An important observable quantity of a stiff polymer is the & nth moment of the chain can be obtained directly from

end-to-end distribution defined i dimensions by the path the expansion coefficient in powers »fof the integral over

integral[2-5 (1.3.
gral[2-5] In natural units withk=1, the path integra{l1.4) solves
L the Schrodinger equation in Euclidean tifrie-5
P,_(R)ocfd[’ubf dDuaf DDu5<D><R—f dsu(s)) gereq 25
0 1 d N
x g (92 [5adu 91 (1.2) <_ EA“ ¥ 5}‘ U (uru 0 =0, (1.8
wherex is the reduced stiffness related to the persistenc@hereA is the Laplacian on a unit sphere. The external elec-
length & by tric field A may be assumed to point in taalirection, or the
« ¢ Dth direction inD dimensions. In the distributiofl.3), only
k=——=(D-1)=. (1.2 the integrated expression
kgT 2
The unit vectorsu(s) are the tangent vectors of the space Wz 7\) = f dPu (uru 0N (1.7
curve of the polymer parametrized by the length paranster Y a a

A Fourier representation of thé function brings this to the

form appears, which is a function @t cosé only, whered is the
- o angle betweenu and the electric field\. The function
P.(R) o —~ R [ 4oy | dPu,(upL|u0, (z, T;\) satisfies the simpler differential equation
—joo 27
- d
(1.3 H:,b(z,r;)\)=—d—w(2,r;)\), (1.8
T
where
where
u(L)=up -
(UpLu 0" = f DPue (W2Iedslu’ (P ru(s) A
U(0)=Ua H = H0+ )\H|
1.4 1 1
14 =--A+2Nz
coincides with the Euclidean path integral of a point particle 2 2
of massM =k moving on a unit sphere in an external electric 1 2 d2 d 1
i =—--1(1-29)—-(D-1z— |+ Az 1.9
field A. 5|12z~ D-Dz |+ (1.9
The desired momentd..5 can be obtained from the coeffi-
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f(m;\) = Jl dzi(z,T;\), (1.10 e = n2:11 Hinica VR, (2.6)
-1

the other fork#1:

i-1

Do) _ S0 0

Il. RECURSIVE SOLUTION OF THE SCHRODINGER 0 J:El G ki E -2

EQUATION Yki = (k) _ () : (2.7)
Eo - 60

in powers of\, evaluated at the Euclidean time L.

The functionf(L;\) has a spectral representation where onlyn=—-1 andn=1 contribute to the sums over

1 since
J dze"(2)exp- E'L)¢"(0) .
LN =2 —— (29 Wy = %I”azll +ny=0, forn#1. (2.8
1=0
dze"(2) 0V (z
f_l %" (2e7(2 The vanishing o1\/\/<n') for n#1 is due to the band-diagonal
| _ o form of the matrix of the interactiorz in the unperturbed
where ¢(2) are th(j solutions of the time-independentpasis|l). It is this property that makes the sums(t6) and
Schrédinger equatiokl¢"(2)=E"¢"(2). Applying the per-  (2.7) finite and leads to recursion relations with a finite num-

turbation theory to this problem, we start from the eigen-ber of terms for alle’’ and y{). To calculateWt, it is con-

states of the unperturbed Hamiltonigiy=—A/2, which are ~ Venient to exprgsé|z|| +n) as matrix elements between un-
given by the Gegenbauer polynomi@8/2-Y(z) with the ei-  hormalized noninteracting statgs} as

genvaluefg):l(l +D-2)/2[6]. Next we set up a recursion {I|zl +n}
scheme for the perturbation expansion of the eigenvalues and (|2l +ny= m (2.9

eigenfunctions as described [ii,8]. We begin with a brief
review of the method. The starting point is the usual expanwhere
sion of energy eigenvalues and states in powers of the cou-

. 1
pling constanix {k|F(Z)||} = J dZCElz_l(Z)F(Z)CPlz_l(Z)(l _ ZZ)(D_S)IZ,
o -1
EV = _ e\, (2.2 (2.10
=0 yielding [9]
© - _ 24_DF(| + D - 2)77
6= 2 o NI’ (2.3 h=i@+o-aroe-2 @

I”,i=0
_ Expanding the numerator ¢2.9) with the help of the recur-
The wave functionsp"(2) are the scalar productz|¢’).  sion relation for the Gegenbauer polynomigls]
The indexi counts the order of the interaction strength _ B _ B _
The lowest expansion coefficients of the energy are of course (T+Dh+1=(2+D-27l} - (1+D -3l -1,
ef)”=Eg). In the second line, we have introduced auxiliary (2.12
normalization constants,, for convenience to be fixed later.

we find the only nonvanishing matrix elements to be
The state vectorl) of the unperturbed system are normal-

ized to unity, but the state vectofeV) of the interacting o I+1
system will be normalized in such a way, tha®"|l)=a, +171}= 21+D - z{l A+, (213
holds to all orders, implying that

+D-3

I
W =80 o=k (2.4 I-1z=o o0 -u-1n 19
Inserting the above expansions into the Schrédinger equ

tion, projecting the result onto the base vectgj,, and Efnsertlng these together witl2.11) into (2.9) gives

extracting the coefficient of', we obtain the relation \/ I(I1+D-3)
Azl -1y = . (2.15
. : (21+D-2)(2l +D - 4)
ey + E Ele,j ARE E ARV (2.9 and a corresponding result fdtz]l +1). We now fix the nor-
i=0 =0 malization constants;, by setting
whereV, ;=\(k|z]j) are the matrix elements of the interaction w
between unperturbed states. Fer0, Eq. (2.5) is satisfied W = 2|71+ 1y =1 (2.19
identically. Fori>0, it leads to the following two recursion “
relations, one fok=I: for all I, which determines the ratios
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o _ [ U+1(0+D-2
oy A D= \/(2| +D)(2+D-2)’

Setting furthera; =1, we obtain

| 1/2
o !H (21 +D - 2)(2l +D—4)] (218

(2.17)

j:l I(I+D_3)

Using this we find from(2.8) the remaining nonzerwﬂ) for
n=-1

h_ I1+D-23)
W(_l_(ZI+D—2)(2I+D—4)'

(2.19

We are now ready to solve the recursion relati¢h$) and
(2.7) for 7|(<|)| and ei(l) order by order iri. For the initial order
i=0, the values of the/(k'z are given by Eq(2.4). The coef-
ficients ei(l) are equal to the unperturbed energké'é:Eg)

=l(1+D-2)/2. For eachi=1,2,3,.., there is only a finite

number of nonvanishing’ and e}') with j<i on the right-

¥
hand sides 0f2.6) and(2.J7), which allows us to calculate

'k, on the left-hand sides. In this way it is €asy 10\, rroM MOMENTS TO END-TO-END DISTRIBUTION
find the perturbation expansions for the energy and the wave

'y(kl)l and ei“)
functions to high orders.

Inserting the resulting expansiof.2) and(2.3) into Eq.
(2.2), only the totally symmetric parts ip"(z) will survive
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FIG. 1. Distribution of the end-to-end distances of polymer for
different stiffnesses, parametrized by the persistence lengths
=1/400,1/100,1/30,1/10,1/5,1/2,1,2. They are compared with the
Monte Carlo calculations of Wilhelm and Fréy6] (symbols and
with his large-stiffness one-loop perturbative resittsn curves.

For the small stiffnesse&=1/400,1/100,1/30, the curves are well
approximated by Gaussian random chain distributions on a lattice
with lattice constangg=2¢, which ensures that.4=2¢ the lowest
moments(R?)=a.4L are properly fiteddashed curvés

IND=3 DIMENSIONS

The moments can now be used to recover the experimen-
tally accessible end-to-end distribution of the polymers for

the integration in the numerators, i.e., we may insert only various degrees of stiffness. We parameterize the distribution

Y2 = (@ eYmm = 2 YoN(Z0).  (2.20
i=0

The denominators of (2.1) become explicitly
2|,Vi\y|(',)ia|/|2)\2i, where the summation overis limited by

power of \? up to which we want to carry the perturbation
series; alsd’ is restricted to a finite number of terms only,

because of the band-diagonal structure ofizf")};.

with an analytic form

P (R) = r*?(1-r/™ r=RIL, (3.1
whose moments are
3+k+2n 3+k
I 3 r 3 +m+1
(R = (3.2

F<3+k>r(3+k+ 2n+m+1).
B B

Extracting the cpefficient_s of the power expansion\in  We now adjust the three parametdgsB, and m to fit the
from (2.1) we obtain all desired moments of the end-to-endthree most important moments of the distribution exactly,

distribution, the lowest two being, after reinsertirgfrom
(1.2,

(R =2{eL - &1 -e)). (2.21)

4(D +2) D?+6D -1 D—7_L/§>
E— - €
D D? D+1
34 2_70 4+ +E)2

+4§4[D 23F-7D+1 (D 5)2e_L,§
D (D+1)

(R = L2¢ - 8L§3<

(D-1)°

+ —e—ZDL/(D—l)§:| )
D3(D +1)?

ignoring all others. If the distances were distributed uni-
formly over the intervalr €0, 1], the moments would be
(R?Mfat=1/(2n+2). Comparing our exact momen{B2")(&)
with the flat ones, we find thgR2")(¢)/(R?™1a has a maxi-
mum for n close ton,,,,(&€) =4¢&. Accordingly, we have cho-
sen to fit(R?), (R*, and(R®) for small persistence length
<1/2. Foré=1/2 wehave started witfR?*, for ¢&=1 with
(R®), and for&=2 with (R9), including always the following
two higher even moments. It tak@s\THEMATICA [11] less
than 10 s to calculate the required momefegsen much
higher moments such &%) take only 2 min.

With these adjustments the resulting distributions are
shown in Fig. 1 for various persistence lengéh3hey are in

The calculation of higher moments is straightforward with aexcellent agreement with the Monte Carlo d#ésymbols
MATHEMATICA program, which we have placed on the Inter- obtained by Wilhelm and Frej1 6] and better than their one-
net in notebook forni11]. The above lowest moments agree loop perturbative resultéhin curves, which are good only
with Ref. [12] and the three-dimensional higher momentsfor very stiff polymers. For the small persistence lengéhs
with Refs.[13,14]. See also the related three-dimensional=1/400,1/100,1/30, the curves are well approximated by

work in Ref.[15].

Gaussian random chain distributions on a lattice with lattice
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constanBe=2¢, i.e., P (R) — e 3L This ensures that the — (1-1)>%™/%1) although the distribution af=2 is fit-
lowest momentR?)=aq4L is properly fitted. In fact, we can ted numerically extremely well.
easily check that our fitting program yields for the param-
etersk,3,m in the end-to-end distributiof8.1) the £— 0 be-
havior: k——¢, B—2+2¢, m—3/4¢, so that(3.1) tends to ACKNOWLEDGMENTS
the correct Gaussian behavior.
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